Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3251, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331950

RESUMO

We aimed to investigate transfer of learning, whereby previously acquired skills impact new task learning. While it has been debated whether such transfer may yield positive, negative, or no effects on performance, very little is known about the underlying neural mechanisms, especially concerning the role of inhibitory (GABA) and excitatory (Glu) (measured as Glu + glutamine (Glx)) neurometabolites, as measured by magnetic resonance spectroscopy (MRS). Participants practiced a bimanual coordination task across four days. The Experimental group trained a task variant with the right hand moving faster than the left (Task A) for three days and then switched to the opposite variant (Task B) on Day4. The control group trained Task B across four days. MRS data were collected before, during, and after task performance on Day4 in the somatosensory (S1) and visual (MT/V5) cortex. Results showed that both groups improved performance consistently across three days. On Day4, the Experimental group experienced performance decline due to negative task transfer while the control group continuously improved. GABA and Glx concentrations obtained during task performance showed no significant group-level changes. However, individual Glx levels during task performance correlated with better (less negative) transfer performance. These findings provide a first window into the neurochemical mechanisms underlying task transfer.


Assuntos
Glutamina , Transferência de Experiência , Humanos , Espectroscopia de Ressonância Magnética/métodos , Aprendizagem , Ácido gama-Aminobutírico , Ácido Glutâmico
2.
Hum Brain Mapp ; 45(1): e26537, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38140712

RESUMO

Synaptic plasticity relies on the balance between excitation and inhibition in the brain. As the primary inhibitory and excitatory neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu), play critical roles in synaptic plasticity and learning. However, the role of these neurometabolites in motor learning is still unclear. Furthermore, it remains to be investigated which neurometabolite levels from the regions composing the sensorimotor network predict future learning outcome. Here, we studied the role of baseline neurometabolite levels in four task-related brain areas during different stages of motor skill learning under two different feedback (FB) conditions. Fifty-one healthy participants were trained on a bimanual motor task over 5 days while receiving either concurrent augmented visual FB (CA-VFB group, N = 25) or terminal intrinsic visual FB (TA-VFB group, N = 26) of their performance. Additionally, MRS-measured baseline GABA+ (GABA + macromolecules) and Glx (Glu + glutamine) levels were measured in the primary motor cortex (M1), primary somatosensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and medial temporal cortex (MT/V5). Behaviorally, our results revealed that the CA-VFB group outperformed the TA-VFB group during task performance in the presence of augmented VFB, while the TA-VFB group outperformed the CA-VFB group in the absence of augmented FB. Moreover, baseline M1 GABA+ levels positively predicted and DLPFC GABA+ levels negatively predicted both initial and long-term motor learning progress in the TA-VFB group. In contrast, baseline S1 GABA+ levels positively predicted initial and long-term motor learning progress in the CA-VFB group. Glx levels did not predict learning progress. Together, these findings suggest that baseline GABA+ levels predict motor learning capability, yet depending on the FB training conditions afforded to the participants.


Assuntos
Ácido Glutâmico , Aprendizagem , Humanos , Aprendizagem/fisiologia , Inibição Psicológica , Destreza Motora , Ácido gama-Aminobutírico
3.
iScience ; 26(6): 106794, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37255665

RESUMO

Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.

4.
J Neurosci ; 41(2): 331-341, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33214318

RESUMO

In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.


Assuntos
Neostriado/anatomia & histologia , Neostriado/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Adulto , Idoso , Envelhecimento/fisiologia , Núcleo Caudado/fisiologia , Estudos Transversais , Sinais (Psicologia) , Tomada de Decisões , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Neostriado/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Núcleo Accumbens/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/crescimento & desenvolvimento , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...